EX1 Initially, three firms A, B, and C (numbered 1, 2, and 3) share the market for a certain commodity. Firm A has 20% of the market, B has 60%, and C has 20%. In the course of the next year, the following changes occur:

 $\begin{cases} A \text{ keeps } 85\% \text{ of its customers, while losing } 5\% \text{ to } B \text{ and } 10\% \text{ to } C \\ B \text{ keeps } 55\% \text{ of its customers, while losing } 10\% \text{ to } A \text{ and } 35\% \text{ to } C \\ C \text{ keeps } 85\% \text{ of its customers, while losing } 10\% \text{ to } A \text{ and } 5\% \text{ to } B \end{cases}$

We can represent market shares of the three firms by means of a *market share vector*, defined as a column vector **s** whose components are all nonnegative and sum to 1. Define the matrix **T** and the initial market share vector **s** by

$$\mathbf{T} = \begin{pmatrix} 0.85 & 0.10 & 0.10 \\ 0.05 & 0.55 & 0.05 \\ 0.10 & 0.35 & 0.85 \end{pmatrix} \quad \text{and} \quad \mathbf{s} = \begin{pmatrix} 0.2 \\ 0.6 \\ 0.2 \end{pmatrix}$$

Notice that t_{ij} is the percentage of j's customers who become i's customers in the next period. So **T** is called the *transition matrix*.

Compute the vector Ts, show that it is also a market share vector, and give an interpretation. What is the interpretation of T(Ts), T(T(Ts)), ...?

Exersices

1. Compute the products **AB** and **BA**, if possible, for the following:

(a)
$$\mathbf{A} = \begin{pmatrix} 0 & -2 \\ 3 & 1 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} -1 & 4 \\ 1 & 5 \end{pmatrix}$ (b) $\mathbf{A} = \begin{pmatrix} 8 & 3 & -2 \\ 1 & 0 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & -2 \\ 4 & 3 \\ 1 & -5 \end{pmatrix}$

(c)
$$\mathbf{A} = \begin{pmatrix} 0 \\ -2 \\ 4 \end{pmatrix}$$
, $\mathbf{B} = (0, -2, 3)$ (d) $\mathbf{A} = \begin{pmatrix} -1 & 0 \\ 2 & 4 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ -1 & 1 \\ 0 & 2 \end{pmatrix}$

- 2. Given the matrices $\mathbf{A} = \begin{pmatrix} 2 & 4 \\ 1 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} 1 & 1 \\ 1 & 3 \end{pmatrix}$, calculate (i) $3\mathbf{A} + 2\mathbf{B} 2\mathbf{C} + \mathbf{D}$ (ii) $\mathbf{A}\mathbf{B}$ (iii) $\mathbf{C}(\mathbf{A}\mathbf{B})$.
- 3. Let $\mathbf{A} = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 3 & -1 & 2 \\ 4 & 2 & 5 \\ 2 & 0 & 3 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 4 & 1 & 2 \\ 0 & 3 & 2 \\ 1 & -2 & 3 \end{pmatrix}$.

Find the matrices A + B, A - B, AB, BA, A(BC), and (AB)C.

4. Write out three matrix equations corresponding to the following systems:

(a)
$$x_1 + x_2 = 3$$

 $3x_1 + 5x_2 = 5$
(b) $x_1 - x_2 + x_3 = 5$
 $2x_1 + 3x_2 - x_3 = 1$
(c) $2x_1 - 3x_2 + x_3 = 6$
 $x_1 + x_2 - x_3 = 6$

- **5.** Consider the three matrices $\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 1 & 5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & 0 \\ 3 & 2 \end{pmatrix}$, and $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (a) Find a matrix C satisfying (A 2I)C = I.
 - (b) Is there a matrix **D** satisfying (B 2I)D = I?

15-5

- **1.** Find the transposes of $\mathbf{A} = \begin{pmatrix} 3 & 5 & 8 & 3 \\ -1 & 2 & 6 & 2 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 2 \end{pmatrix}$, $\mathbf{C} = (1, 5, 0, -1)$.
- 2. Let $\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -1 & 5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 0 & 2 \\ 2 & 2 \end{pmatrix}$, and $\alpha = -2$. Compute \mathbf{A}' , \mathbf{B}' , $(\mathbf{A} + \mathbf{B})'$, $(\alpha \mathbf{A})'$, $\mathbf{A}\mathbf{B}$, $(\mathbf{A}\mathbf{B})'$, $\mathbf{B}'\mathbf{A}'$, and $\mathbf{A}'\mathbf{B}'$. Then verify all the rules in (2) for these particular values of \mathbf{A} , \mathbf{B} , and α .
- 3. Show that $\mathbf{A} = \begin{pmatrix} 3 & 2 & 3 \\ 2 & -1 & 1 \\ 3 & 1 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 4 & 8 \\ 4 & 0 & 13 \\ 8 & 13 & 0 \end{pmatrix}$ are symmetric.
- **4.** For what values of a is $\begin{pmatrix} a & a^2 1 & -3 \\ a + 1 & 2 & a^2 + 4 \\ -3 & 4a & -1 \end{pmatrix}$ symmetric?
- 5. Is the product of two symmetric matrices necessarily symmetric?
- **SM** 6. If A_1 , A_2 , and A_3 are matrices for which the given products are defined, show that

$$(\mathbf{A}_1\mathbf{A}_2\mathbf{A}_3)' = \mathbf{A}_3'\mathbf{A}_2'\mathbf{A}_1'$$

Generalize to products of n matrices.

- 7. An $n \times n$ matrix **P** is said to be **orthogonal** if $\mathbf{P}'\mathbf{P} = \mathbf{I}_n$.
 - (a) For $\lambda = \pm 1/\sqrt{2}$, show that $\mathbf{P} = \begin{pmatrix} \lambda & 0 & \lambda \\ \lambda & 0 & -\lambda \\ 0 & 1 & 0 \end{pmatrix}$ is orthogonal.
 - (b) Show that the 2 × 2 matrix $\begin{pmatrix} p & -q \\ q & p \end{pmatrix}$ is orthogonal if and only if $p^2 + q^2 = 1$.
 - (c) Show that the product of two orthogonal $n \times n$ matrices is orthogonal.
- SM 8. Define the two matrices **T** and **S** by $\mathbf{T} = \begin{pmatrix} p & q & 0 \\ \frac{1}{2}p & \frac{1}{2} & \frac{1}{2}q \\ 0 & p & q \end{pmatrix}$, $\mathbf{S} = \begin{pmatrix} p^2 & 2pq & q^2 \\ p^2 & 2pq & q^2 \\ p^2 & 2pq & q^2 \end{pmatrix}$, and assume that p+q=1.
 - (a) Prove that $\mathbf{T} \cdot \mathbf{S} = \mathbf{S}$, $\mathbf{T}^2 = \frac{1}{2}\mathbf{T} + \frac{1}{2}\mathbf{S}$, and $\mathbf{T}^3 = \frac{1}{4}\mathbf{T} + \frac{3}{4}\mathbf{S}$.
 - (b) Conjecture formulas for constants α_n , β_n such that $\mathbf{T}^n = \alpha_n \mathbf{T} + \beta_n \mathbf{S}$ for $n = 2, 3, \ldots$, then prove the formulas by induction.

15-6

1. Solve the following systems by Gaussian elimination.

(a)
$$x_1 + x_2 = 3$$
$$3x_1 + 5x_2 = 5$$

$$x_1 + 2x_2 + x_3 = 4$$
(b)
$$x_1 - x_2 + x_3 = 5$$

$$2x_1 + 3x_2 - x_3 = 1$$

(c)
$$2x_1 - 3x_2 + x_3 = 0$$
$$x_1 + x_2 - x_3 = 0$$

2. Use Gaussian elimination to discuss what are the possible solutions of the following system for different values of *a* and *b*:

$$x + y - z = 1$$

$$x - y + 2z = 2$$

$$x + 2y + az = b$$

 \leq 3. Find the values of c for which the system

$$2w + x + 4y + 3z = 1$$
$$w + 3x + 2y - z = 3c$$
$$w + x + 2y + z = c2$$

has a solution, and find the complete solution for these values of c.

SM 4. Consider the two systems of equations:

$$ax + y + (a + 1)z = b_1$$
(a) $x + 2y + z = b_2$
 $3x + 4y + 7z = b_3$
(b) $x + 2y + z = b_2$
 $3x + 4y + 7z = b_3$

Find the values of a for which (a) has a unique solution, and find all solutions to system (b).