Teilchenzahl & Stoffmenge

- 1. Bestimmen Sie die Anzahl der Teilchen in einer Probe, die 0,5 mol Wasser enthält.
- 2. Berechnen Sie die Anzahl an Calcium-Teilchen und Chlor-Teilchen, die sich in 0,02 mol Calciumchlorid (CaCl₂) befinden. Hinweis: Avogadro-Zahl (6,022 10²³) beachten.
- 3. Wie viele Moleküle enthält eine Probe mit 0,25 mol Ammoniak?
- 4. Berechnen Sie die Anzahl der Moleküle in 10 g Sauerstoffgas. ($M(O_2) = 32,00$ g/mol)
- 5. Berechnen Sie die Stoffmenge an Salzsäure, die entsteht, wenn 3,65 g Chlorwasserstoffgas in Wasser gelöst werden. (M(HCl) = 36,46 g/mol)
- 6. Wie viele Moleküle sind in 0,0150 mol SO₂ enthalten? (N_A = 6,022•10²³ mol⁻¹)
- 7. Wie viele Teilchen sind in 3,50 g Neon enthalten? (M(Ne) = 20,18 g/mol; N A)
- 8. Wie viele Moleküle enthält 1,00 L O₂ bei NB? (22,4 L/mol; N_A)
- 9. Wieviel Mol entsprechen 9,03•10²² Formeleinheiten CaCl₂? (N_A)
- 10. Wie viele Natrium-Ionen sind in 0,250 mol Na₃PO₄ enthalten?

Molare Massen

- 11. Berechnen Sie die molaren Massen (M) von Magnesiumnitrat (Mg(NO₃)₂) und Oxalsäure (C₂H₂O₄). (M(Mg) = 24,31; M(N) = 14,01; M(O) = 16,00; M(C) = 12,01; M(H) = 1,008 g/mol)
- 12. Berechnen Sie die molare Masse von Natriumphosphat (Na_3PO_4). (M(Na) = 22,99; M(P) = 30,97; M(O) = 16,00 g/mol)
- 13. Welche Molare Masse weist die Verbindung Ba(ClO_4)₂ auf? Hinweis: M(Ba) = 137,0; M(Cl) = 35,5; M(O) = 16,0 g/mol.
- 14. Berechnen Sie die relative Molekülmasse von Harnstoff $CO(NH_2)_2$. (M(C)=12,01; M(H)=1,008; M(N)=14,01; M(O)=16,00)
- 15. Berechnen Sie die relative Molekülmasse von Natriumhydrogencarbonat NaHCO₃. (M(Na)=22,99; M(H)=1,008; M(C)=12,01; M(O)=16,00)
- 16. Berechnen Sie die relative Molekülmasse von Magnesiumsulfat-Heptahydrat MgSO₄•7H₂O. (M(Mg)=24,31; M(S)=32,06; M(O)=16,00; M(H)=1,008)
- 17. Berechnen Sie die relative Molekülmasse von Kaliumdichromat $K_2Cr_2O_7$. (M(K)=39,10; M(Cr)=52,00; M(O)=16,00)
- 18. Berechnen Sie die relative Molekülmasse von Essigsäure CH_3COOH . (M(C)=12,01; M(H)=1,008; M(O)=16,00)

Masse ↔ **Stoffmenge**

19. Berechnen Sie die Masse an Calciumchlorid, die der Stoffmenge aus Aufgabe 8 entspricht. ($M(CaCl_2) = 110,98 \text{ g/mol}$)

- 20. Bestimmen Sie die Stoffmenge in 12,0 g Natriumchlorid NaCl. (M(Na)=22,99; M(Cl)=35,45)
- 21. Bestimmen Sie die Stoffmenge in 7,50 g Kaliumpermanganat KMnO₄. (M(K)=39,10; M(Mn)=54,94; M(O)=16,00)
- 22. Bestimmen Sie die Stoffmenge in 85,0 mg Phosphorsäure H_3PO_4 . (M(H)=1,008; M(P)=30,97; M(O)=16,00)
- 23. Bestimmen Sie die Stoffmenge in 2,40 kg Calciumcarbonat CaCO₃. (M(Ca)=40,08; M(C)=12,01; M(O)=16,00)
- 24. Bestimmen Sie die Stoffmenge in 0,250 g Ammoniumnitrat NH_4NO_3 . (M(N)=14,01; M(H)=1,008; M(O)=16,00)
- 25. Berechnen Sie die Masse von 1,25 mol Glucose $C_6H_{12}O_6$. (M = 180,16 g/mol)
- 26. Berechnen Sie die Masse von 0,0800 mol Aluminiumoxid Al_2O_3 . (M(Al)=26,98; M(O)=16,00)
- 27. Berechnen Sie die Masse von 35,0 mmol Schwefelsäure H_2SO_4 (M(H)=1,008; M(S)=32,06; M(O)=16,00)
- 28. Berechnen Sie die Masse von 2,20 mol Ethanol C_2H_6O . (M = 46,07 g/mol)
- 29. Berechnen Sie die Masse von 0,500 mol Ammoniumsulfat $(NH_4)_2SO_4$. (M(H)=1,008; M(N)=14,01; M(S)=32,06; M(O)=16,00)

Konzentration / Verdünnen / pH

- 30. Die Masse an Calciumchlorid aus Aufgabe 9 wird in 50 mL Wasser vollständig gelöst. Welche Stoffmengenkonzentration besitzt die so hergestellte Lösung?
- 31. Es werden 38,0 g Kaliumsulfat in 100 mL dest. Wasser gelöst. Die entstandene Lösung wird auf ein Endvolumen von zwei Litern aufgefüllt. Berechnen Sie die Stoffmengenkonzentration der hergestellten Lösung. $(M(K_2SO_4) = 174,26 \text{ g/mol})$
- 32.1,0 mL einer 0,1 molaren (= 0,1 mol/L) Salzsäure-Lösung wird auf einen Liter Gesamtvolumen verdünnt. Welchen pH-Wert weist die hergestellte Lösung auf?
- 33. Eine Salzsäurelösung besitzt einen pH-Wert von 0. Sie entnehmen 10 mL und verdünnen auf 1,0 Liter. Welche Konzentration an Salzsäure weist die Lösung auf?
- 34. Bei der Neutralisation von 50 mL Kalilauge (KOH_aq) verbraucht man 200 mL einer 0,10 M HI_aq . Wie groß ist etwa die Stoffmengenkonzentration "c" der Kalilauge?
- 35. Sie neutralisieren eine 0,5 M KOH_aq-Lösung mit 500 mL einer 0,10 M HCl_aq. Welches Volumen "V" hatte die KOH-Lösung?
- 36. Berechnen Sie die Stoffmenge an Wasser, die bei der Neutralisation von 0,5 mol Salzsäure mit Natriumhydroxid entsteht.
- 37. Sie haben 10 mL einer NaOH-Lösung, verdünnen auf 10 Liter; der pH beträgt 9. Berechnen Sie die Konzentration der unverdünnten Lösung.

Gase: Volumen, Dichte, Molmasse

38. Wie viele Liter Sauerstoff sind erforderlich, um 5,0 g Wasserstoff vollständig zu verbrennen? ($M(H_2)=2,016; M(O_2)=32,00$)

- 39. Berechnen Sie das Volumen von Wasserstoffgas, das unter Normalbedingungen bei der Zersetzung von 10 g Wasser entsteht. (M(H₂O)=18,016)
- 40. Wie viele Liter Wasserstoffgas entstehen bei der Reaktion von 4 g Natrium mit Wasser unter Normalbedingungen? (M(Na)=22,99)
- 41. Bei NB: Welches Volumen besitzt 0,375 mol CO₂? (22,4 L/mol)
- 42. Wie viele Liter H_2 (NB) entstehen aus 0,250 mol H_2 O bei Zersetzung (2 H_2 O \rightarrow 2 H_2 + O_2)?
- 43. Wie groß ist die Stoffmenge von 11,2 L N₂ (NB)?
- 44. Welches Volumen (NB) nehmen 28,0 g CO ein? (M(CO)=28,01; 22,4 L/mol)
- 45. Bestimmen Sie die Dichte (g/L) von SO₂ bei NB. (M(SO₂)=64,06; 22,4 L/mol)
- 46. Ein Gas hat die Dichte 1,96 g/L bei NB. Bestimmen Sie seine Molmasse. (M = D•22,4)
- 47. Ermitteln Sie die molare Masse eines Gases, wenn 2,00 g bei p=1,00 bar, T=298 K das Volumen 1,70 L einnehmen. (R = 0,08314 L•bar•mol⁻¹•K⁻¹)
- 48. Wie groß ist die Molmasse eines Gases, wenn 2,00 g bei p=1,00 bar und T=273 K ein Volumen von 1,12 L einnehmen? (R = 0,08314 L•bar•mol⁻¹•K⁻¹)
- 49. Ein unbekanntes Gas hat bei NB die Dichte 0,714 g/L. Ordnen Sie es He, N_2 , CO, O_2 oder CH_4 zu.
- 50.500 mL eines Gases bei NB enthalten 0,00893 mol. Welche Dichte hat das Gas bei NB (g/L)?
- 51.3,00 g eines Gases belegen bei NB 1,12 L. Bestimmen Sie die Molmasse. (22,4 L/mol)
- 52. Ein Gasgemisch enthält 0,200 mol CO_2 und 0,300 mol N_2 . Wie groß ist die Gesamtstoffmenge und welcher Anteil (%) entfällt auf CO_2 ?
- 53. Ein Gemisch aus 0,40 mol CO₂ und 0,60 mol O₂ hat bei NB das Volumen 22,4 L. Welche Teilvolumina entfallen auf die Komponenten?
- 54. Sie haben im Praktikum eine Propangasflasche mit V = 0.6 L und p = 80 bar. Welche Stoffmenge Propan ist enthalten? Hinweis: T = 300 K; R = 0.0831 L•bar•mol⁻¹•K⁻¹. (M(C₃H₈) = 44.10 g/mol)

Reaktionsstöchiometrie (Verbrennung / Bildung)

- 55. Wieviel g O_2 werden zur Verbrennung von 1,5 g H_2 benötigt? Wieviel g H_2O entstehen? (M(H_2)=2,016; M(O_2)=32,00; M(H_2O)=18,016)
- 56. Welche Masse an Wasser entsteht bei der Reaktion von 8 g Wasserstoff mit Sauerstoff? ($M(H_2O)=18,016$)
- 57. Wie viele Mol O_2 werden benötigt, um 32 g Schwefel vollständig zu SO_2 zu verbrennen? (M(S)=32,06)
- 58. Wieviel Gramm SO₃ können maximal bei der Verbrennung von 16,0 g Schwefel entstehen? (M(S)=32,06; M(SO₃)=80,06)
- 59. Berechnen Sie die Masse von CO₂, die bei der Verbrennung von 12 g Kohlenstoff entsteht. (M(C)=12,01; M(CO₂)=44,01)
- 60. Berechnen Sie die Masse an CO_2 , die bei der Verbrennung von 44 g Propan entsteht. (M(C_3H_8)=44,10; M(CO_2)=44,01)
- 61. Wie viele Mol O₂ werden verbraucht, wenn 10 mol Methan vollständig verbrannt werden?

- 62. Berechnen Sie die Stoffmenge an CO_2 , die bei der vollständigen Verbrennung von 5,0 g Methan entsteht. (M(CH₄)=16,04; M(CO₂)=44,01)
- 63. Berechnen Sie die Masse an H_2SO_4 , die entsteht, wenn 40 g SO_3 mit Wasser reagieren. (M(SO_3)=80,06; M(H_2SO_4)=98,08)
- 64. Welche Masse an CaCO₃ ist erforderlich, um 44 g CO₂ zu produzieren? (M(CaCO₃)=100,09)
- 65. Berechnen Sie die Masse von NH_3 , die aus 28 g N_2 und überschüssigem H_2 gebildet wird. ($M(N_2)=28,02$; $M(NH_3)=17,03$)
- 66. Wie viele Mol NH₃ entstehen aus 28 g N₂ und 6 g H₂? (M(N₂)=28,02; $M(H_2)=2,016$)
- 67. Berechnen Sie die Masse an NaOH, die entsteht, wenn 23 g Natrium mit Wasser reagieren. (M(NaOH)=40,00)
- 68. Wie viel Gramm NaCl entstehen bei der Reaktion von 2,0 mol Na mit Cl₂? (M(NaCl)=58,44)
- 69. Welche Masse an AlCl₃ entsteht, wenn 54 g Al mit Chlor reagieren? (M(Al)=26,98; M(Cl)=35,45)
- 70. Welche Masse an Fe_2O_3 entsteht, wenn 16,8 g Eisen vollständig oxidiert werden? (M(Fe)=55,85; M(Fe₂O₃)=159,69)
- 71. Welche Masse an FeCl₃ entsteht, wenn 55,8 g Eisen vollständig mit Chlor reagieren? (M(FeCl₃)=162,20)
- 72. Berechnen Sie die Menge an MgO, die bei der Reaktion von 6,0 g Mg mit O₂ entsteht. (M(Mg)=24,31; M(MgO)=40,30)
- 73. Wie viel Gramm Al_2O_3 entstehen, wenn 27 g Aluminium vollständig mit Sauerstoff reagieren? (M(Al_2O_3)=101,96)
- 74. Bei der Reaktion von 6,5 g Zink mit Cl_2 entstehen 13,6 g eines Zinkchlorids. Welche Formel hat das Produkt? (M(Zn)=65,38; M(Cl)=35,45)
- 75. Bei der Reaktion von 4,6 g Natrium mit Cl_2 entstehen 11,7 g eines weißen Feststoffes. Welche Formel hat das Produkt? (M(Na)=22,99; M(Cl)=35,45)
- 76. Bei der Reaktion von 12,0 g Zinn mit Cl_2 entstehen 26,2 g eines weißen Feststoffes. Welche Formel hat das Produkt? (M(Sn)=118,71; M(Cl)=35,45)
- 77. Welchen Wert hat "X" beim stöchiometrisch korrekten Ausgleichen: $NH_3 + X \bullet O_2 \rightarrow NO + H_2O$?
- 78. Es werden 27,0 g Aluminium mit elementarem Iod zur Reaktion gebracht. Nach der Reaktion liegen 408,0 g eines Aluminiumiodids vor. Welche Summenformel weist die Verbindung auf? (M(Al)=26,98; M(I)=126,90)
- 79. Wie viel Gramm Na₂SO₄ entstehen, wenn 2 mol NaOH mit Schwefelsäure reagieren? (M(Na₂SO₄)=142,04)

Weitere Stöchiometrie / Ionen / Spezialfälle

- 80.0,250 mol NH₃ werden vollständig zu $(NH_4)_2SO_4$ umgesetzt. Welche Masse des Salzes entsteht? (M = 132,14 g/mol)
- 81. Wie viele Gramm NH₄Cl entstehen aus 0,200 mol NH₃ und überschüssiger HCl? (M(NH₄Cl)=53,49)
- 82.25,0 g Ca(OH)₂ reagieren mit CO_2 zu $CaCO_3$ + H_2O . Welche Masse CO_2 wird verbraucht? (M(Ca(OH)₂)=74,09; M(CO_2)=44,01)
- 83. Wie viele Mol H_2SO_4 sind nötig, um 0,300 mol Na_2CO_3 vollständig zu neutralisieren? ($Na_2CO_3 + H_2SO_4 \rightarrow Na_2SO_4 + CO_2 + H_2O$)

- 84.0,500 mol CaCl₂ werden vollständig in Wasser gelöst. Wie viele Mol Ionen sind insgesamt in Lösung vorhanden?
- 85.15,0 g Na₂SO₄ enthalten wie viele Mol Natrium-Ionen? (M(Na₂SO₄)=142,04)
- 86.0,250 mol K₃PO₄ enthalten wie viele Mol Kalium-Atome?

Empirische Formel / Zusammensetzung / Hydrate

- 87. Empirische Formel aus Massenanteilen: 40,00 % C, 6,71 % H, 53,29 % O. Bestimmen Sie die empirische Formel.
- 88. Empirische Formel aus Massenanteilen: 27,3 % C, 72,7 % O. Bestimmen Sie die empirische Formel.
- 89. BaCl₂•xH₂O: 4,26 g Hydrat werden erhitzt, es bleiben 3,52 g BaCl₂ zurück. Bestimmen Sie x. (M(BaCl₂)=208,23; M(H₂O)=18,016)
- 90.2,00 g eines Hydrats $CuSO_4 \bullet xH_2O$ werden auf 1,28 g $CuSO_4$ erhitzt. Bestimmen Sie x. (M(CuSO₄)=159,61; M(H₂O)=18,016)
- 91. Massenverhältnis in BaSO₄: In welchem Massenverhältnis (Ba: S: O) stehen die Elemente? (M(Ba)=137,33; M(S)=32,06; M(O)=16,00)
- 92. Ein Erz enthält 60,0 % Fe_2O_3 und 15,0 % FeO (Rest inert). Berechnen Sie den Massen-% Eisen im Erz. (M(Fe_2O_3)=159,69; M(FeO)=71,85)

"Molare Masse aus Daten" (Rückschluss)

- 93. Ermitteln Sie die molare Masse einer Substanz, wenn 0,315 mol genau 18,9 g wiegen.
- 94. Ermitteln Sie die molare Masse einer Substanz, wenn 0,0450 mol genau 3,06 g wiegen.
- 95. Ermitteln Sie die molare Masse einer Substanz, wenn 12,0 g einem Stoffmengenanteil von 0,0800 mol entsprechen.
- 96. Wie groß ist die Molmasse von XCl, wenn 4,26 g XCl 0,0300 mol entsprechen? (M(Cl)=35,45)

Metallreaktionen / Redox-Beispiele

- 97.1,20 g Zn reagieren mit HCl: Zn + 2 HCl \rightarrow ZnCl₂ + H₂. Wie viele Liter H₂ (NB) entstehen? (M(Zn)=65,38)
- 98. Aus 10,0 g Eisen reagieren mit überschüssigem Schwefel zu FeS. Welche Masse FeS entsteht? (M(Fe)=55,85; M(S)=32,06)
- 99. Aus 5,00 g Cu entstehen durch Oxidation zu CuO wie viele Gramm CuO? (M(Cu)=63,55; M(CuO)=79,55)
- 100. 10,0 g Fe₂O₃ reagieren mit überschüssigem CO zu Fe: Fe₂O₃ + 3 CO \rightarrow 2 Fe + 3 CO₂. Welche Masse Fe entsteht? (M(Fe₂O₃)=159,69; M(Fe)=55,85)